
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 22, 104 1-1 059 (1 996)

A NON-LINEAR ADAPTIVE TRI-TREE MULTIGRID SOLVER
FOR FINITE ELEMENT FORMULATIONS OF THE

NAVIER-STOKES EQUATIONS

S . 0. WLLE
Faculty of Engineering, Oslo College, Norway, Cort Adelersgate 30, N-0254 Oslo, Norway

SUMMARY

An iterative adaptive equation multigrid solver for solving the implicit Navier-Stokes equations simultaneously
with hi-trce grid generation is developed. The hi-tree grid generator builds a hierarchical grid structure which is
mapped to a finite element grid at each hierarchical level. For each hierarchical finite element multigrid the
Navier-Stokes equations are solved approximately. The solution at each level is projected onto the next finer grid
and used as a start vector for the iterative equation solver at the finer level. When the finest grid is reached, the
equation solver is iterated until a tolerated solution is reached. The. iterative multigrid equation solver is
preconditioned by incomplete LU factorization with coupled node fill-in.

The non-linear Navier-Stokes equations are linearized by both the Newton method and grid adaption. The
efficiency and behaviour of the present adaptive method are compared with those of the previously developed
iterative equation solver which is preconditioned by incomplete LU factorization with coupled node fill-in.

KEY WORDS: grid generation; tri-tree; unstructured grid; multigrid; finite element; mixed formulation; analytic integration;
adaptive solver; Navier-Stokes equations

INTRODUCTION

Intensive research on developing efficient algorithms for solving the Navier-Stokes equations for
arbitrary geometries has taken place in several physical disciplines such as aerodynamics,’
hydrodynamics2 and haem~dynamics.~.~ For implicit solution algorithms,” direct equation solvers
have shown limitations due to rather large computer storage and computer time requirements.’ In view
of this, iterative equation solvers have been paid extensive attention, with the ultimate goal to be able to
solve the Navier-Stokes equations for large, time-dependent, three-dimensional problems with complex
geometry. Although there have been substantial developments towards efficient solvers, there are still
needs and possibilities for further improvements.

Recently, several iterative equation solvers for non-symmetric equation systems have been developed
and t e~ ted .~*~-” These iterative equation solvers have gained quite a lot in both efficiency and
robusmess by the use of different preconditioning algorithms of the equation system. l3-lS In previous
papersss7 a new incomplete LU factorization preconditioner with a coupled node fill-in algorithm was
presented. The philosophy of this ILU preconditioner made it possible to obtain also a preconditioning
matrix for the pressure coefficients in the equation matrix. Fill-ins with this algorithm were allowed
where the nodes in the equation system were coupled and not only where the coefficients were initially
different from zero. This ILU preconditioner revealed advantageous properties also when the equation
system was reduced to form an inner-outer iterative alg~ri thm.~

CCC 0271-2091/96/111041-19
0 1996 by John Wiley & Sons, Ltd.

Received February I995
Revised August I995

1042 S. 0. WILLE

The most timeconsuming operation in iterative equation solvers of the conjugate gradient t y p is
matrix-vector multiplication. Since the finite element equations are solved for successively finer grids
during the refinement procedure, the matrix generation of the equation system should be as fast as
possible. Traditionally, numerical integration is applied to form the equation matrix. However, since
simple elements such as triangles in two dimensions and tetrahedra in three dimensions are applied,
the integration of the element matrix terms can be executed analytically. Analytical integration will
then save a lot of computational work during the finite element calculations. The integration formulae
consist of a constant part, independent of element size, multiplied by a term containing the relative
location of the nodes within each element.

During the transition from coarse to finer grid the solution of the coarse grid is interpolated to the
fine grid and used as a start vector at the fine grid. The refinement procedure on the grid consists of
dividing each element into four new elements in two dimensions and eight new elements in three
dimensions. Then some nodes will be common to both the coarse and the fine grid. For these nodes,
solution values of the coarse grid are used directly. New nodes in the fine grid are generated at the
midpoints between the nodes in the coarse grid. The start values for the iterations at these nodes in the
fine grid are then found by linear interpolation. The main purpose of the present adaptive algorithm is
to obtain better start vectors as the grids become more and more refined. When the finest grid is
reached, the solution is iterated until the desired convergence criterion is satisfied.

the tri-tree
algorithm for generating grids in two and three dimensions, was presented. The tri-tree algorithm
method starts with a triangle or tetrahedron which is subdivided into four new triangles or eight new
tetrahedra respectively. The tri-tree structure then has pointers like the quad-tree and oct-tree.'9'20 The
main and essential difference is that the leaves in the tri-tree consist of triangles and tetrahedra. The
triangulation procedure of the tri-tree element structure is then much simplified compared with that of
the oct-tree structure and will only consist of connecting triangles or tetrahedra of different sizes. By
introducing very mild restrictions on the tri-tree structure, which hardly affect the ability of local
refinements, the triangulation procedure becomes very simple. The elements generated are optimal in
the sense that they do not collapse during the refinements. The elements are equilateral triangles and
tetrahedra, or at the interfaces of elements of different sizes the equilateral triangles will be divided
into two and the equilateral tetrahedra will be divided into two or four.

During the triangulation procedure an efficient search algorithm is needed for finding co-ordinate
points in space. In the present work a lexical tree search algorithm for the point co-ordinates has
proved to be very efficient.

The initial triangle is successively subdivided into four new triangles and the tetrahedron into eight
new tetrahedra. The successive subdivision is continued until the required level of refinement is
reached. At each level of tri-tree refinement an associated finite element grid can be constructed and
used for finite element calculations. The tri-tree data structure is therefore well suited for an adaptive
algorithm.

In a previous paper a new tri-tree method16 for generating unstructured

EQUATIONS

The non-linear Navier-Stokes equations are given by

- ~ V ~ V + ~ V . V V + V ~ = O in n,
- v . v = o in n,

TRI-TREE MULTIGRID SOLVER FOR NAVIER-STOKES EQUATIONS 1043

where v is the velocity vector,p is the pressure and p is the viscosity coefficient. The first equation is the
equation of motion which contains a diffusion and a pressure gradient term. The second equation is the
equation of continuity. A minus sign is introduced in the continuity equation in order to obtain the same
sign for the pressure gradient as for the continuity equation in the finite element formulation. In the
finite element formulation the velocities are approximated with quadratic basis functions and the
pressure is approximated with linear basis functions on each element.*’ Denote the quadratic
polynomials by Ni and the linear polynomials by Li. Then by the Galerkin residual method and
integration by parts the second-order finite element formulation of the Navier-Stokes equation system
becomes

The following equation system can then be solved by successive approximation for the second-order
polynomial approximation:

There are several methods for linearizing this equation system. Usual linearization techniques
involves the computation of gradients or approximate gradients, e.g. Newton or steepest descent
methods. However, another simple way of linearization which has not previously been given attention
is adaptive grid approximation. The adaptive grid linearization method will be discussed in a later
section.

NEWTON LINEARIZATION

The Navier-Stokes equations contain one non-linear term, the convective acceleration, which requires a
non-linear iterative solution procedure. The non-linear algorithm chosen is the Newton method, which is
known to have a second-order convergence rate. The Navier-Stokes equations (3) then have to be
differentiated with respect to the unknowns and the linear equation system which has to be solved at
each Newton step is

1044 S. 0. WlLLE

where the matrix and the right-hand side are given by

- J, L,V - v m 1
If the initial solution yo, po is chosen close enough to the final solution, convergence of the non-linear

equation system is guaranteed. The solution is then updated at each Newton step with the correction
found by solving (6):

v"+' = v" + Av, (7)

p" + Ap. (8) pn+l =

The number of Newton steps to obtain a converged solution is usually of the order of 5-10, depending
on the strength of the non-linearities and the magnitude of the convergence criterion.

The Newton method for non-linear equation systems can also be applied favourably to the linear
Stokes equations. For linear equation systems, only one Newton iteration is required. The advantage of a
Newton formulation for linear equation systems appears when introducing the Dirichlet boundary
conditions. The columns and rows in the equation matrix can then be zeroed with a one on the
corresponding diagonal and a zero on the right-hand side. The Dirichlet value is included in the initial
guess of the solution vector. The application of Dirichlet boundary conditions to the original equation
matrix would be more complicated to maintain the advanlageous symmetric property, as the Dirichlet
condition multiplied by the corresponding column vector has to be subtracted from the right-hand side.

ADAPTIVE LINEARIZATION

The non-linear set of Navier-Stokes equations can be linearized in several ways. The Newton
linearization can take place globally and the multigrid algorithm can be applied to solve the linearized
Navier-Stokes equations for each Newton step. Another way of linearization is to linearize locally at
each grid level and solve the non-linear Navier-Stokes equations at each grid level. However, an
alternative or supplement to Newton linearization of the equation system is local grid adaptation to the
solution, which will also contribute to the linearization of the equation system. From the analytic
integration the following formula is obtained:

J, PNivc v?c m
(9) - - -

b ' I, PVN, V? d!2

In this formula, a and b are constants independent of element size, while 1 is some characteristic length
of the element. The formula shows that the magnitude of the matrix coefficient of the convection can be
reduced arbitrarily compared with the diffusion coefficient in the implicit equation system by local

TRI-TREE MULTIGRID SOLVER FOR NAVIER-STOKES EQUATIONS 1045

refinements. A natural criterion for adapting the grid to the solution of the Navier-Stokes equations
would then be to fulfil the criterion

r r

The above relations are valid in both two and three dimensions and for first- and second-order
polynomial approximations of the Navier-Stokes equations. By reducing the element size where the
convection is large, the equation system becomes more and more linear and symmetric. If the local
element size is then reduced sufficiently, this implicit adaptive linearization will for many Navier-
Stokes applications appear to be sufficient and satisfactory.

ANALYTIC INTEGRATION

Let the linear basis functions be denoted by L, and the quadratic basis functions by Ni. Then in three
dimensions

Li = ai + bp + c$ + d;z.

The quadratic basis function can then be given as a function of the linear basis function. For the comer
nodes i and midside nodes n respectively

N , = Li(2L, - l) , Nn = 4LjLkt

where the nodes j and k are the comer nodes on each side of the midside node n. The comer nodes are
numbered first, then the midside nodes.

Let nd be the spatial dimension. The exact integrals can be computed by the formula

Let

6 j j , k , n , , , = a!)!y!6!w!.

The hnction 6 j j , k , n , m is simple to implement: just count the number of equal indices and compute the
corresponding faculties.

In the formulae below the &function is defined by

2, i = j ,
1, i # j .

Linear matrix coeficients

Let the comer nodes have the local node numbers 1, . . . , n, and let the midside nodes be locally
numbered as n, + 1 , . . . , n,. In the second-order basis function formulation the integrals of the
derivatives in the equation matrix are given by

D = (nd l)(nd 2)t

iii = 1, j = j ,

1046

.. .
11 = I , JJ = midpoint(n, m),

ii = midpoint(n, m), JJ = midpoint@, q) ,

.. .
11 = I , kk = k, JJ = midpoint(n, m),

TRI-TREE MULTlGRlD SOLVER FOR NAVIER-STOKES EQUATIONS 1047

.. .
11 = 1, kk = midpoint(n, m), JJ = j ,

.. .
11 = I , kk = midpoint(n, m), JJ = midpoint@, q),

dn = (2Lf - Li)4L,Lm4
f n

= ([32diinmp - 16dinW(nd + 5)] ax

ii = midpoint(n, m), kk = k, JJ =J.

ii = midpoint(n, m), kk = k, J = midpoint@, q),

aL
= ([3 2 6 b m p - 166,,,,Jnd + 5)13 ax + [326,, - 16dhmq(nd +

(20)

ii = midpoint(n, m), kk = midpoint@, q), J = j ,

aN.. aL.
4L,L,4L&J4Lj - 1)' dn ax

ii = midpoint(n, m), kk = midpoint@, q), JJ = midpoint(r, s),

Usually, numerical integration, e.g. Gauss integration, is applied to compute the coefficients in the
finite element matrices. When simple elements such as triangles and tetrahedra are used, it is possible to

1048 S. 0. WlLLE

perform analytical integration. The coefficients of diffusion, convection, continuity and pressure
gradient can be computed exactly.

TRI-TREE STRUCTURE

In the tri-tree search algorithm,'6 equilateral triangles and tetrahedra are used as basic domains. The
equilateral triangles and tetrahedra are then subdivided into new equilateral triangles and tetrahedra. In
two dimensions an equilateral triangle is divided into four triangles. A diagram of the two-dimensional
tri-tree structure is shown in Figure 1. An initial equilateral triangle is divided into four new equilateral
triangles. Each of these triangles can then be divided into another four equilateral triangles, and so on.
The tree structure of these divisions is shown in the lower part of Figure 1. The record belonging to each
triangle contains pointers to the triangles into which it is subdivided. This triangulation procedure
therefore permits local refinements required by the geometric shape of the boundary as well as the
properties of the solution.

In three dimensions an equilateral tetrahedron is divided into eight tetrahedra. The ordering of
successive divisions is organized as a tree structure. The tree record structure needs nine integers in two
dimensions and 14 integers in three dimensions in order to keep the necessary information at each level
of subdivision.

Figure 1 . Hierarchical structure of the tri-tree. An initial equilateral triangle is divided into four new equilateral triangles. Each of
these triangles can then be divided into another four equilateral triangles, and so on. The tree structure of these divisions is shown
in the lower part ofthe figure. The record belonging to each triangle contains pointem to the triangles into which it is subdivided.
This triangulation procedure therefore permits local refinements q u k d by the geometric shape of the boundary as well as the

properties of the solution

TRI-TREE MULTIGRID SOLVER FOR NAVIER-STOKES EQUATIONS 1049

The records describing each two-dimensional triangular leaf are shown in Figure 2. A level number
indicates the size of division and all triangles or tetrahedra of equal size will have the same level number.
When a division is terminal, the level number is given a negative sign. In addition to the level number, a
point index to each of the comers of the structure is stored. This is not strictly necessary, because the co-
ordinates of each point can be calculated when they are needed. However, if the corner points are stored,
the computing time is considerably reduced. The next positions in the structured record are pointers to
the records of the divisions. When a triangle or tetrahedron is terminal, some of these pointers are used
as pointers to the neighbour using triangles and tetrahedra instead. The last integer in the record points
to the record of the parent triangle or tetrahedron. It is therefore possible to perform both up and down
searches in the tri- tree.

When a triangle or tetrahedron is divided, the midpoint on each line between the comers is calculated.
This point may already exist if the neighbour has a larger level number. If a point does not exist, it is
added to the list of points. In order to be able to search for and add points fast, the list is organized as a
binary tree. The binary tree, Figure 3, is sorted lexically on the point coordinates.

DJ

I-.'lpolpJ IPJ 1.. I J I J I I / I

Figure 2. Numbering of triangular leaves in the tree structure together with global numbering of nodes. The record of each
triangular structure contains information on the level of refinement at which the triangle is located. If the refinement level number
is negative, the triangle is terminal in the tree structure. The following three n u m b in the ltcord point to the co-ordinates of the
comm of the triangle. For a non-tmninal triangular leafthe next four n u m b point to the record of the four triangles into which
it is divided. I f the triangular leaf is terminal, threc of thcse numbers are used as pointm to the n x d s of ncighbouring triangles.

The last number in the triangle mod points to the mod of its ppnat

1050 S. 0. WILLE

In order to find the neighbours of a tri-tree element, a search in the tri- tree is performed to find which
tri-tree element contains a point slightly outside the edge or side of the present triangle or tetrahedron.
The point to use in the hi-tree search is given by

P = P, + (P , - P,) /d + E(Pg - P,). (23)

In this expression, Ps is the centre of gravity and P" is a comer in the tri-tree element. The spatial
dimension is d (d = 2 or 3) and E is a small constant which depends on the accuracy of the actual
computer. If E is zero, P is the point where the line from the comer P, through the point of gravity hits
the opposite edge or side. For small E the point P will be on the line from comer through the point of
gravity slightly outside the tri-tree element. The constant E should be chosen so that the computer
representation of

in only two or three of the least significant digits. The point P defined in this way is a point slightly
outside the element edge or side opposite to the comer P,. A search in the hi-tree for a tri-tree element
which encloses a point can either start at the mot of the tree or at the location of the last search. If the
points which are searched for are introduced in a random fashion, it will be most efficient to start at the
root of the tree. When a search for the point P defined above is performed, the a priori knowledge is that
the point is enclosed in an adjacent tri-tree element. The probability is therefore high that the adjacent
tri-tree element belongs to the same subtree. If the tri-tree element belongs to the same subtree, it is
faster to start the search at the present location, or even better at one level above the present location,
than from the root of the tree. On the average, experiments indicate that it is most efficient to start the
search at one level above the present. At each level the four triangles in two dimensions and the eight
tetrahedra in three dimensions are explored to find which one contains the point.

In the balancing procedure a tree element is refined if more than one neighbour is at a smaller level.
The balancing procedure is an interative procedure. After the balancing procedure the tri-tree is valid for
triangulation. In two dimensions there is at most one node at the midpoint of one of the edges of the
triangles. This tri-tree triangle is divided into two finite element triangles. In three dimensions the
situation is more complex. Each equilateral tri-tree tetrahedron can either have one node on one of the
edges or three nodes at the edges of one of the sides. If there is one node at one edge, the tetrahedron is
divided into two. If there are three nodes at the edges of one side, the tetrahedron is divided into four
finite element tetrahedra. The triangulation procedure is only applied to tri-tree elements which are
inside the computational domain. When the tri-tree is triangulated, the finite elements are kept in a finite
element structure and the tri-tree structure is stored to be used later when the multigrid is M e r adapted
to the solution.

ADAPTIVE SOLVER

Let d denote the set of grids (d: k = 1, . . . , N}, where the grids d are in increasingly finer order. Let
xk E X" be the set of functions which we require to solve the set of differential equations on the grid d.
Let the transfer operator from coarse to fine grid be p: xk-' + x k , where 3 is the prolongation from
coarse to fine. Let the set of differential equations to be solved on Gk be given by

P(x") = bk. (25)

Let Smoorh(x, 2) be a smoothing or approximate solution algorithm defined on every grid d, i the
start vector and x the smoothed vector. The adaptive multigrid algorithm is then defined by

TRI-TREE MULTIGRlD SOLVER FOR NAVIER-STOKES EQUATIONS

r,
L R

1051

1; 4
L R L R

Binary tree. lexically sorted

rn

Given two points, P arid Q

P = [z , ~ , z] and Q = (u ,v ,w]

then P 5 Q if

where

i f x s u
i f x = u y i v
1 f x = u y - v z < w

Figure 3. During the refinement process the nodes wth co-ordinates are stored in a binary tree. The key to each node is the co-
ordinates, which determine whether one node is smaller or larger than another. The des are then lexically sorted and a fast

search algorithm will decide whether a point during the refinement procedure is already presmt in the bee structure

Choose ik
for (k = 1; k(= N - 1; k + +)

{
= xk + p(&' - p);

Smooth(x~, S k) ;

I
Solve FN(#) = bN iteratively.

The initial triangle or tetrahedron is successively refined until the desired refinement level is reached. At
each tri-tree level of refinement a finite element grid is constructed and the set of dfferential equations is
solved approximately for this grid. The approximate solution on one finite element multigrid level is
then interpolated and projected onto the finer grid and used as a start vector for this grid.

The prolongation pk is the mapping from coarse to fine grid. The values of the common nodes are
taken fiom the coarse grid and the values of the new nodes at the midpoints of each side are interpolated
linearly. The linear interpolation procedure is simply to take the average between two comer nodes. The
prolongation algorithm is applied in both two and three dimensions. There exist more complicated local
smoothing algorithms which take into account several neighbouring nodes. However, as local
smoothing is followed by global smoothing, a simple first-order local smoothing algorithm is sufficient.

The critical part of the adaptive multigrid algorithm is the global smoothing method. The special
problem which arises with the Navier-Stokes equations is the zero diagonal block'.' associated with the
continuity equation, which implies non-positive definiteness of the equation matrix. Thus smoothing
algorithms such as Gauss-Seidel and traditional ILU factorization cannot be applied directly as

1052 S. 0. WILLE

smoothing procedure. However, if some rather arbitrary postconditioning22 matrix is used, this
limitation can be overcome. The difficulty with non-positive definiteness can also be avoided with
inner- outer iterations. As the equation matrix is non-symmetric, the usual conjugate gradient type of
smoothing cannot be applied either. The introduction of inner-outer iterations and a postconditioning
matrix certainly represents an increase in superfluous work. In the present work the CGSTAB conjugate
gradient with coupled node fill-in, which is often considered as an iterative equation solver,
is used as smoother.

The adaptive multigrid algorithm starts with the coarsest grid, computing a smoothed or exact
solution for this grid. This solution and the corresponding residual are then prolonged to the finer grid.
At the finest multigrid level the solution is determined fully converged. When the equation system is
solved for the finest grid, the adaptive multigrid cycle is complete.

The smoothing algorithm within each adaptive multigrid iteration can be just a few iterations with the
CGSTAB smoother or a fully converged solution found by the CGSTAB equation solver. For linear
equations the equation solver can be stopped either after a fixed small number of iterations or by a
convergence criterion defined by

where 8 is the residual and bk is the right-hand side at multigrid level k. However, for non- linear
equations this convergence criterion is not quite suitable, as the right-hand side approaches zero in the
Newton iteration procedure. A better convergence criterion for the linear iterations for solving non-
linear equations is

where xk is the solution of the non-linear equation system and 6xk is the update in the linear equation
solver. For the linear Stokes equations the two convergence criteria are equivalent and of the same order
of magnitude.

NUMERICAL EXPERIMENTS

The node numbering delivered by the tri-tree grid generator is shown in Figure 2. The nodes in the tri-
tree generator are numbered as new nodes are introduced during refinement of the grid. The comers are
numbered first, and when the final refinement level is reached, the midside nodes are introduced in
element order. However, this way of ordering the nodes is not optimal when the equation system is
preconditioned by incomplete factorization with coupled node fill-in. Four ways of numbering the nodes
were tested in a previous paper.23 In the sorting algorithm used in the present experiments, Figure 4, the
nodes are sorted with respect to their distance from the centre of the grid. The node which is W e s t
away from the geometrical centre is given the smallest number. The node in the middle of the grid gets
the highest number.

The test problem for the Navier-Stokes equations is the cavity problem and the boundary conditions
are shown in Figure 5. In Figure 6 a hierarchy of the multigrid is shown. By the projection algorithm the
equation system is first solved for the coarsest gnd. The solution is projected onto the finer grid and
used as start vector in the Newton iterations. The projection of the solution onto the finer grid consists of
using the solution on the coarse grid for common nodes and computing the linear interpolation of the
solution for nodes in the fine grid which are not present in the coarse grid.

Figure 7 shows the solution of the Stokes equations in terms of velocity vectors and pressure isobars.
The velocity vectors show the flow circulation and the pressure isobars show a pressure minimum in the

TRI-TREE MULITGRID SOLVER FOR NAVIER-STOKES EQUATIONS

All Sort

3 11 16 12 4

9Ml0

1 4 .s 23 15

7 8

-
1 5 1 3 6 2

1053

Figure 4. Node ordenng after sorting the nodes with respect to their distance from the geometrical centre a : gnd. The
boundary nodes are numbered first and the centre node has the highest number

‘1 = 0. Y = YO

._
= n.r = II

.- 1
” = 0.” = 0

Figure 5. Test problem of two-dimensional cavity flow with boundary conditions. The velocities are zero at the walls, except for
the left wall where a tangential velocity is specified

Figm 6. Hierarchy of gnds used in computations. The initial grid is shown at the top and has eight finite elements with a total of
nine comer nodes. At the next lcvel of refinement each of these elements is divided into four new elements, giving a total of 32
elements and 25 comer nodes. The start vector for each finer grid is the solution from the coarser @id for common nodes. The

start values for new nodes are found by linear interpolation

1054 s. 0. WlLLE

Figure 7. Wimcnsional solution of Stokes equations for cavity flow. The solution is presented in tenns of pressure isobars and
velocity vectors. The upper part of the figure shows the solution seem from above and the lower part shows the solution rotated in
space. The height of each isobar comsponds to the pressme value at the isobar. The level of refinements is 4 with a 16 x 16

rectangular grid. The number of degrees of freedom is 2267

upstream part of the cavity and a pressure maximum at the downstream comer of the cavity. Both the
pressure and flow show antisymmetric patterns with respect to a midline normal to the main direction of
flow.

Figure 8 shows the solution of the Navier-Stokes equations for a Reynolds number of 500. The
solution of the Navier-Stokes equations differs essentially from the solution of the Stokes equations.
The antisymmetric patterns of the Stokes solution are completely absent. The pronounced pressure
minimum at the upstream comer has disappeared, while the pressure maximum at the downstream
comer is still present. The velocity circulation has become more circular in shape and the centre of the
vortex has moved upstream and deeper into the cavity.
An overview of the cavity multigrid parameters is given in Table I. For each multigrid level of

refinement the grid size and numbers of velocity nodes, pressure nodes and degrees of freedom are
shown. In Table I1 the number of iterations and amount of work are shown for solving the Stokes
equations for different refinement levels of the multigrid of the cavity problem. With the original
method the zero vector is used as start vector for the Newton iterations. For the projection method the
solution of the coarser grid is projected onto the finer grid and used as start vector for the non-linear
iterations of the finer level. When the zero start vector is applied, it is possible to obtain a solution of the
Stokes equations up to level 6. For finer grids the equation solver fails to converge. For levels 5 and 6 it
is also necessary to restart the linear iterative solver to avoid stagnant solutions. The properties of the
linear iterative equation solver with regard to stagnant and nonconverging solutions are in accordance

TRI-TREE MULTlGRlD SOLVER FOR NAVIER-STOKES EQUATIONS 1055

Figure 8. Twodimensional solution of Navier-Stokes equations for cavity flow. Tke solution is pmented in terms of prcssurr
isobars and velocity vectors. The upper part of the figure shows the solution sccn from above and the lowex part shows the

solution rotated in space. The height of atch isobar comsponds to the pressure value at the isobar. The level of refinements is 4
with a 16 x 16 nxtangular grid. The number of degrees of Fmdom is 2267

with the increasing condition number with grid refinements and increasing number of degrees of
freedom of the linear equation system.

Table I. Parameters for the different grid levels. The first column shows the level of
refinement. The second column shows the number of grid divisions in hkro dimensions for the
cavity problem. The third and fourth columns show the numbers of velocity and pressure
nodes respectively for the second-order finite element formulation. The last column show the

number of degrees of freedom for each grid level

Velocity Pressure Degrees
Level Grid nodes nodes of freedom

2 x 2
4 x 4
8 x 8

16 x 16
32 x 32
6 4 x 6 4

128 x 128
256 x 256
512 x 512

25
82

290
1090
4225

16641
66049

263 169
1,050625

9
25
82

290
1090
4225

16641
66049

263 I69

59
187
659

2267
9539
37507

148739
592387

2364419

1056 S. 0. WlLLE

Table 11. Number of iterations for solving the Stokes equations with the original method and
the projection method. The initial and iterative amounts of work are shown in terms of number
of multiplications x lo-’. The initial work is the work performed during the incomplete
factorization with coupled node fill-in and the iterative work is the number of multi-
plications x lo-’ during one iteration. All nodes are sorted with respect to the geometrical
centre of the grid for both the original and the projection method. The zero vector is used as
start vector for the linear iterations in the original method and the solution from the coarser
grid is used as start vector for the projection method. The linear convergence criterion is
4 = The subscripts indicate the number of iterations between restarts of the iterative

equation solver

Iterations Work

Level original Projection Initial Iterative

I 2 2 I5 10
2 4 4 58 37
3 14 8 225 139
4 60 18 893 540
5 33730 11 3553 2130

7 - 6 58,400 33,480
8 - 3 134,200 132,961
9

6 l86lsO 9 14,180 8459

-

The projection method shows a maximum number of iterations for multigrid level 4. For finer grids
the number of iterations required to obtain a converged solution is decreased. At multigrid level 8 as few
as three iterations are necessary for convergence. This property of the projection method is clearly
explained by the fact that the projected solution from the coarser grid is very close to and almost within
the convergence criterion of the solution of the finer grid. In contrast, the original method is incapable of
reaching a converged solution at all, owing to the condition number of the Stokes equation system, for
finer grids.

In Table I11 the number of iterations necessary for solving the Navier-Stokes equations for a Reynolds
number of 500 is shown. In the experiments the solution of the Stokes equations is used as start vector
for the Newton iterations. The numbers of linear iterations in these experiments are considerably less
than those appearing in previous work.5 The reduction in the number of iterations in this work is due to
the sorting of the nodes. In the previous work the nodes were numbered row by row, first the comer
nodes, then the midside nodes.

Table III. Number of Newton iterations and number of linear iterations within each Newton
iteration for the original method, where the Stokes solution is used as start vector for the
Newton iteration. The linear and non- linear convergence criteria are E = I O-4. The Reynolds
number is 500. The nodes are all sorted with respect to distance from the geometrical centre of

the grid

Iterations

Level Newton Linear Sum

3 9 27 29 27 21 7 4 5 3 1 124
4 9 66 23 57 44 23 7 4 8 3 235
5 9 72 27 22 39 32 15 6 10 4 227
6 9 83 63 56 59 68 33 47 6 10 425

TRI-TREE MULTIGRID SOLVER FOR NAVIER-STOKES EQUATIONS 1057

The effect of introducing non-linearities gradually into the equation system is demonstrated in Table
IV. The start vector of the Newton iterations is the linear solution of the Stokes equations. The non-
linearity of the equation system is introduced by increasing the density in steps of Ap = 333 from
p =333 to 1000. The final Reynolds number of 500 is then reached. The increasing density method
requires fewer linear iterations, both in each Newton iteration and totally, to obtain convergence
compared with the original Newton method, except for multigrid level 5. The increase in the number of
iterations at level 5 may be caused by a small perturbation in the start vector or in the intermediate
computation and experiments indicate that this is not a general property of the method.

The convergence propedes of the projection method are shown in Table V The numbers of linear
iterations needed at all multigrid levels to achieve convergence are considerably less than for both the
original Newton method and the increasing density method. The table also shows that the total number
of convergent iterations is fairly constant and independent of refinement level. The total amount of work
in obtaining the solution must include the work in obtaining the solution for all coarser grids. For
example, based on the figures given in the table, the total amount of work in obtaining the solution with
the original Newton method is approximately six times the amount of work in obtaining the solution
with the projection method. The dominating amount of work for the projection method is the work
required at the finest grid level. In order to compare the two methods, it is therefore sufficient to
compare the numbers of iterations required by them at the same level of refinement.

Table N Number of Newton iterations and number of linear iterations within each Newton
iteration for the original method, where the solution of the Stokes equations is used as start
vector for the Newton iteration. The linear and non-linear convergence criteria are E =
The Reynolds number is 500. The density is increased for the first three Newton iterations. In
the first Newton iteration the density is p = 333, in the second p = 666 and for the following

iterations the density is p = lo00

Iterations

Level Newton Linear Sum

3 9 19 17 25 23 6 4 5 3 3 105
4 9 22 12 13 26 7 3 3 3 1 90
5 9 49 26 69 12 49 21 12 4 11 253
6 9 104 24 46 27 17 44 23 49 10 344

Table V Number of itemtions and number of linear iterations within each
Newton iteration for the projection method, where the projection from the
coarser grid is used as start vector for the Newton iteration. The linear and non-

linear convergence criteria are E = The Reynolds number is 500

Iterations

Level Newton Linear SUm

4 4 43 29 12 3 0 0 0 8 7
5 7 15 16 15 6 3 5 3 70
6 7 11 21 5 6 18 8 5 74
7 7 21 12 7 3 7 3 5 58
8 7 6 21 19 4 5 5 13 73

1058 S. 0. WILLE

DISCUSSION

The goal of this work has been to develop a solution algorithm for the Navier-Stokes equations
which is robust, fast and sparse. The robustness is attached to the implicit solution techniques for the
diffmntial equation system. The speed of the algorithm is tied to the computer time needed. The
sparsity is linked to the storage requirements of the algorithm. The adaptive multigrid method
described in this paper seems to some extent to have these properties.

In the present paper an adaptive multigrid method for solving the Navier-Stokes equations is
developed. The adaptive multigrid algorithm may be considered as consisting of five essential parts:
multigrid generation, adaptive refinement, matrix integration, intergrid transition and adaptive
equation solver.

The multigrid generation is based on the tri-tree algorithm, which permits the construction of a
finite element grid at each tree level. The tri-tree algorithm allows for adapting the grid both to
irregular geometry and to the solution of the system of differential equations. The matrix generation is
executed by analytic integration and is therefore fast enough for the coefficients in the equation matrix
to be easily generated whenever needed in the solution algorithm. The transition from coarse to fine
grids is direct for the common nodes and linear interpolation is used for the new nodes.

The most important property of the adaptive multigrid algorithm is that when the grid is sufficiently
refined, the start vector is almost within the solution tolerance and only a few iterations are needed.
For more complex boundary conditions and geometries when local spatial refinement is needed, this
property can be used to obtain an accurate solution where large gradients in the solution occur.

The Navier-Stokes equations can be considered as a composite of the Stokes equations and the
Euler equation. The solution of the Stokes equation is, for relatively smooth boundaries and smooth
initial conditions, in some sense a smooth solution. The coarseness of a regular grid in the entire
computational domain should then be determined by the accuracy required in this smooth solution.
The solution of the Euler equation is of a finite different nature. The solution varies from some rapid
decay or rise to a shock appearing inside a limited number of finite elements, but is reasonably smooth
or constant elsewhere. When a large gradient in the solution is due to an initial condition, the
discontinuity is transmitted through the domain. When a large gradient in the solution value is caused
by an irregular boundary shape, the solution is stationary within the computational domain. In both
these situations the grid has to be refined locally around gradients in order to achieve an appropriate
accuracy of the solution at the sites where these gradients occur.

The results of the present work show that owing to the increase in condition number of the Stokes
equations with refinements of the multigrid, it becomes more and more difficult to achieve a
convergent solution as the multigrid is refined. In contrast, it is advantageous to have a fine grid in
order to linearize and symmetrize the Navier-Stokes equations owing to the non-linear convection
term. These investigations indicate that the conjugate gradient algorithm together with the original
Newton formulation of the Navier-Stokes equations is not capable of solving the Navier-Stokes
problem for very fine grids or very large non-linearities. The projection algorithm developed in the
present paper overcomes these shortcomings of the original Newton method and reveals properties
which resolve the competitive requirements arising from the condition number and the non-linearity of
the equation system.

Further research will concentrate on adaptive tri-tree multigrid structures for irregular grids and
local multigrid adaptation to discontinuities in both the solution and the boundary geometry.

ACKNOWLEDGEMENT

The author is grateful to Olav Dahl for discussions of numerical methods.

TRI-TREE MULTlGRID SOLVER FOR NAVIER-STOKES EQUATIONS I059

REFERENCES

1. T. J. R. Hughes, L. I? F m c a and G. M. Hulbert, ‘A new finite element formulation for computational fluid dynamics. VIII.
The Galerkin/least-squares method for advectivodiffusive equations’, Comput. Methodr Appl. Mech. Eng., 73, 173-1 89
(1989).

2. T. Utnes, ‘Finite element modeling of quasi-three dimensional nearly horizontal flow’, Int. j . numer: methodsjuids, 12, 559-
576 (1991).

3. S. 0. Wille, ‘Numerical simulations of steady flow inside a three dimensional aortic bifurcation model’. A Biomed. Eng., 6,
49-55 (1984).

4. E. Barragy and G. F. Carey, ‘A partitioning scheme and iterative solution for sparse bordmd systems’, Comput. Methodr
Appl. Mech. Eng., 70,321-327 (1988).

5 . 0. Dahl and S. 0. Wille, ‘An ILU preconditioner with coupled node fill-in for iterative solution of the mixed finite element
formulation of the 2-D and 3-D Navier-Stokes equations’, Inr. j . numer: methodspuids, 15, 525-544 (1992).

6. S. 0. Wille, ‘Pulsatile pressure and flow in arterial aneuIysm simulated in a mathematical model’, J Biomed. Eng., 3, 153-
158 (1981).

7. S. 0. Wille, ‘A preeonditioned alternating inner-outer iterative solution method for the mixed finite element formulation of the
Navier-Stokes equations’, Int. j. numer. methoukpltidq 18, 1 135-1 151 (1994).

8. A. George and J. W. Liu, Computer Solutions oflorge Sparse Positive Definite System, Rentice-Hall, Englewood Cliffs, NJ,
1981.

9. I? K. W. Vinsome, ‘Orhornin, an iterative method for solving sparse sets of simultaneous linear equations’, P m . Fourth
Symp. on Reservoir Simulation, Society of Petroleum Engineers of AIME, New York, 1976, pp. 147-159.

10. D. M. Young and K. C. Yea, ‘Generalized conjugate-gradient acceleration of non-symmetrizable iterative methods’, Lin. Alg.

11. I? Sonneveld ‘CGS, a fast Lanczos-type solver for non-symmetric linear systems’, SIAM A Sci. Stat. Comput., 10, 3 6 5 2

12. H. A. van der Vont, ‘Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear

13. G. F. Carey, K. C. Wang and W. D. Joubert. ‘Performance of iterative methods for Newtonian and generalized Newtonian

14. C. Vincent and R. Boyer, ‘A preconditioned conjugate gradient Uzawa- type method for the solution of the Stokes problem by

15. 0. G. Johnson, C. A. Michelli and G. Paul, ‘Powomial preconditionem for conjugate gradient calculations’, SIAMJ Numer:

16. S . 0. Wille, ‘A structured bi-tree search method for generation of optimal unstructured finite element grids in two and three

17. J. Peraire, M. Vadati, K. Morgan and 0. Zienkiewicz, ‘Adaptive remeshing for compressible flow computations’, A Comput.

18. R. hhner, K. Morgan and 0. C. Zienkiewicz, ‘An adaptive finite element procedure for compressible high speed flows’.

19. W. J. Schroedcr and M. S. Shepard, ‘A combined octree/Delauney method for fully automatic 3-D mesh generation’, Int. j .

20. H. K. Ruud and S. 0. Wille, ‘An advancing front algorithm for three dimensional mesh generation’, Proc. NUMETA 90,

21. C. Taylor and P. Hood, ‘A numerical solution of the Navier-Stokes equations using the finite element technique’, Compur.

22. W. Hackbush. Multi-Grid Methodr and Applications, Springer, Berlin, 1985.
23. S. 0. Wille, ‘An adaptive unstructured bi-tree iterative solver for mixed finite element formulation of the Stokes equations’,

Appl., 34, 159-194 (1980).

(1987).

systems’, S I A M A Sci. Stat. Comput., in press.

flows’, Int. j . numer. methoukfiirls, 9, 127-150 (1989).

mixed Q1-PO stabilized finite elements’, Inf. j . numer mefhodsfiids, 14, 289-298 (1992).

A n d , 20, 362-376 (1983).

dimensions’, Int. j . numex methodsfluds, 14, 861-881 (1992).

Phys., 71,449-466 (1987).

Comput. Methods Appl. Mech. Eng., 51,441464 (1985).

numer. methods eng., 29, 37-55 (1990).

Numerical Methoak in Engineering: Theory and Applications, January 1990.

Fluids, 1 . 73-100 (1973).

Int. j . numer. mefhodspltids, 22, 899-913 (1996).

